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Abstract
We discuss a model of dissipative dynamics of two qubits that can entangle
some initially separable states.

PACS numbers: 03.65.Ud, 03.65.Yz, 03.67.−a

1. Introduction

As is well known, entangled states of composite quantum systems play a central role in quantum
communication [1], quantum cryptography [2] and quantum computing [3]. Entanglement
shows up when the system consists of two or more subsystems and the total state cannot be
written as a product state. Pure entangled states are superpositions of multiparticle states and
as such are extremely fragile with respect to noise. In practical realization, every quantum
system is open, and unavoidable interaction with its environment results in dissipation and
destruction of correlations. As a consequence, even if initially some amount of entanglement
is present in the system, it will subsequently disappear. Recently, however, the interesting
idea that dissipation can create rather than destroy entanglement in some systems, was put
forward in several publications [4–7]. This possibility is also considered in the present
paper. We study the simplest composite quantum system consisting of two qubits (two-level
quantum subsystems). The qubits are coupled to a common thermostat at zero temperature
and the reduced dynamics (in the Markovian approximation) is given by the semi-group
{Tt} of completely positive linear mappings acting on density matrices [8]. When qubits
are realized by two-level atoms, this kind of dynamics takes into account only spontaneous
emission and possible photon exchange between atoms [9]. In that case, the generator L of
{Tt} is parametrized in terms of the spontaneous emission rate of the single atom γ0 and the
photon exchange rate γ . In the following, we focus on the realization of qubits by two-level
atoms and consider time evolution of the initial state of the system as well as the evolution
of its entanglement, measured by the so-called concurrence [10, 11]. First, we study the
mathematically idealized situation when the photon exchange rate γ is close to γ0 and we
can use the approximation γ = γ0 (a model with a similar choice of γ was also considered
in [12]). The approximation is legitimate when two atoms are separated by a small distance
compared to the radiation wavelength. In such a case there is a substantial probability that a
photon emitted by one atom will be absorbed by the other and the photon exchange process
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can produce correlations between atoms which partially overcome decoherence caused by
spontaneous emission. We analytically investigate the properties of the semi-group generated
by L with γ = γ0 and we calculate its asymptotic stationary states ρas. The results show that
they depend on initial conditions (i.e. the semi-group is relaxing but not uniquely relaxing).
The concurrence of ρas also depends on the initial state and can be nonzero for some of
them. We discuss in detail some classes of initial states. In particular, we show that there are
pure separable states evolving to entangled mixed states and which remain separable during
evolution. The class of pure maximally entangled initial states is also discussed. Similar
‘production’ of entanglement is shown to be present for some classes of mixed states. On the
other hand, for the more realistic model in which the photon exchange rate is smaller than
γ0 and depends on the interatomic distance, the relaxation process brings all initial states to
the unique asymptotic state when both the atoms are in their ground states. Even in that case
the dynamics can entangle two separable states, but the amount of entanglement decreases to
zero.

It is worth stressing that the paper discusses the theoretical possibility of the creation
of entanglement by a purely incoherent dissipative process. We show that this is possible
in principle; depending on the initial state the dynamics can create rather than destroy
entanglement. However, experimental realization of such a process with real two-level atoms
seems to be problematic,mainly due to the difficulty in preparation of relevant initial states. For
example, preparation of the state when one atom is in an excited state and the other in the ground
state, which evolves to an asymptotic state with nonzero entanglement, may not be possible
when the atoms are separated by a distance less than radiation wavelength. On the other hand,
when the distance is larger, the timescale on which the produced entanglement is maximal may
be small. Similarly, the detection of entanglement by some physical measurement process
is difficult. It is impossible during the time evolution of the system without destroying
correlations leading to entanglement. For asymptotic states, one can try to detect the violation
of some CHSH-Bell inequality. But it may not work for mixed states [13, 14].

2. Pairs of two-level atoms

Consider a two-level atom A with ground state |0〉 and excited state |1〉. This quantum system
can be described in terms of the Hilbert space HA = C2 and the algebra AA of 2 × 2 complex
matrices. If we identify |1〉 and |0〉 with vectors

(1
0

)
and

(0
1

)
respectively, then the raising and

lowering operators σ+, σ− defined by

σ+ = |1〉〈0| σ− = |0〉〈1| (1)

can be expressed in terms of Pauli matrices σ1, σ2

σ+ = 1
2 (σ1 + iσ2) σ− = 1

2 (σ1 − iσ2). (2)

For a joint system AB of two two-level atoms A and B, the algebra AAB is equal to 4 × 4
complex matrices and the Hilbert space HAB = HA ⊗ HB = C4. Let EAB be the set of all
states of the compound system, i.e.

EAB = {ρ ∈ AAB : ρ � 0 and tr ρ = 1}. (3)

The state ρ ∈ EAB is separable [13], if it has the form

ρ =
∑

k

λkρ
A
k ⊗ ρB

k ρA
k ∈ EA ρB

k ∈ EB, λk � 0 and
∑

k

λk = 1. (4)

The set E sep
AB of all separable states forms a convex subset of EAB . When ρ is not separable, it

is called inseparable or entangled. Thus

Eent
AB = EAB

∖E sep
AB. (5)
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If P ∈ EAB is a pure state, i.e. P is a one-dimensional projector, then P is separable iff partial
traces trAP and trBP are also projectors. For mixed states, the separability problem is much
more involved. Fortunately, in the case of a four-level compound system there is a basic
necessary and sufficient condition for separability: ρ is separable iff its partial transposition
ρTA is also a state [15]. Another interesting question is how to measure the amount of
entanglement a given quantum state contains. For a pure state P, the entropy of entanglement

E(P) = −tr [(trAP) log2(trAP)] (6)

is essentially a unique measure of entanglement [16]. For a mixed state ρ, it seems that the
basic measure of entanglement is the entanglement of formation [17]

E(ρ) = min
∑

k

λkE(Pk) (7)

where the minimum is taken over all possible decompositions

ρ =
∑

k

λkPk. (8)

Again, in the case of a four-level system, E(ρ) can be explicitly computed and it turns out
that E(ρ) is the function of another useful quantity C(ρ) called concurrence, which also can
be taken as a measure of entanglement [10, 11]. Since in this paper we use concurrence to
quantify entanglement, we now discuss its definition. Let

ρ† = (σ2 ⊗ σ2) ρ (σ2 ⊗ σ2) (9)

where ρ is the complex conjugation of the matrix ρ. Also define

ρ̂ = (ρ1/2ρ†ρ1/2)1/2. (10)

Then the concurrence C(ρ) is given by [10, 11]

C(ρ) = max(0, 2pmax(ρ̂) − tr ρ̂ ) (11)

where pmax(ρ̂ ) denotes the maximal eigenvalue of ρ̂. The value of the number C(ρ) varies
from 0 for separable states, to 1 for maximally entangled pure states.

3. Decay in a system of closely separated atoms

We study the spontaneous emission of two atoms separated by a distance R, small compared
to the radiation wavelength. At such distances there is a substantial probability that the photon
emitted by one atom will be absorbed by the other. Thus the dynamics of the system is given
by the master equation [9]

dρ

dt
= Lρ ρ ∈ EAB (12)

with the following generator L

Lρ = γ0

2

[
2σA

− ρσA
+ + 2σB

− ρσB
+ − (

σA
+ σA

− + σB
+ σB

−
)

ρ − ρ
(
σA

+ σA
− + σB

+ σB
−

)]
+

γ

2

[
2σA

− ρσB
+ + 2σB

− ρσA
+ − (

σA
+ σB

− + σB
+ σA

−
)

ρ − ρ
(
σA

+ σB
− + σB

+ σA
−

)]
(13)

where

σA
± = σ± ⊗ I σB

± = I ⊗ σ± σ± = 1
2 (σ1 ± iσ2). (14)
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Here γ0 is the single atom spontaneous emission rate, and γ = gγ0 is a relaxation constant of
photon exchange. In the model, g is a function of the distance R between atoms, and g → 1
when R → 0. In this section we investigate the time evolution of the initial density matrix ρ

of the compound system, governed by the semi-group {Tt}t�0 generated by L. In particular,
we will study the time development of entanglement of ρ, measured by concurrence.

Assume that the distance between atoms is so small that the exchange rate γ is close to
γ0 and we can use the approximation g = 1. Under this condition we study evolution of
the system and in particular we consider asymptotic states. Direct calculations show that the
semi-group {Tt} generated by L with g = 1 is relaxing but not uniquely relaxing, i.e. there
are as many stationary states as there are initial conditions. More precisely, for a given initial
state ρ = (ρjk), the state ρ(t) at time t has the following matrix elements with respect to the
basis e1 = |1〉 ⊗ |1〉, e2 = |1〉 ⊗ |0〉, e3 = |0〉 ⊗ |1〉, e4 = |0〉 ⊗ |0〉
ρ11(t) = e−2γ0 tρ11

ρ12(t) = 1
2 [e−2γ0t (ρ12 + ρ13) + e−γ0 t (ρ12 − ρ13)]

ρ13(t) = 1
2 [e−2γ0t (ρ12 + ρ13) + e−γ0 t (ρ13 − ρ12)]

ρ14(t) = e−γ0 tρ14

ρ22(t) = 1
4 e−2γ0 t (ρ22 + ρ33 + 2Re ρ23) + 1

2 e−γ0t (ρ22 − ρ33) + γ0t e−2γ0tρ11

+ 1
4 (ρ22 + ρ33 − 2Re ρ23)

ρ23(t) = 1
4 e−2γ0 t (ρ22 + ρ33 + 2Re ρ23) + 1

2 e−γ0t (ρ23 − ρ32) + γ0t e−2γ0tρ11

− 1
4 (ρ22 + ρ33 − 2Re ρ23)

ρ24(t) = − 1
2 e−2γ0t (ρ12 + ρ13) + 1

2 e−γ0t (2ρ12 + 2ρ13 + ρ24 + ρ34) + 1
2 (ρ24 − ρ34)

ρ33(t) = ρ22(t)

ρ34(t) = − 1
2 e−2γ0t (ρ12 + ρ13) + 1

2 e−γ0t (2ρ12 + 2ρ13 + ρ24 + ρ34) − 1
2 (ρ24 − ρ34)

ρ44(t) = −e−2γ0t (ρ11 + ρ22 + Re ρ23) − 2γ0t e−2γ0 tρ11 + 1
2 (1 + ρ11 + ρ44 + 2Re ρ23)

and the remaining matrix elements can be obtained by the Hermiticity condition ρkj = ρjk .
In the limit t → ∞ we obtain asymptotic (stationary) states parametrized as follows:

ρas =


0 0 0 0

0 α −α β

0 −α α −β

0 β −β 1 − 2α

 (15)

where

α = 1
4 (ρ22 + ρ33 − 2Re ρ23) β = 1

2 (ρ24 − ρ34). (16)

We can also compute the concurrence of the asymptotic state and the result is: the concurrence
of asymptotic state of the semi-group {Tt} generated by L with g = 1 is equal to

C(ρas) = 2|α| = 1
2 |ρ22 + ρ33 − 2Re ρ23| (17)

where ρjk are the matrix elements of the initial state.

4. Some examples

In this section we consider examples of initial states and their evolution.
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4.1. Pure separable states

Let

ρ = P�⊗� = P� ⊗ P� (18)

where

� =
(

�1

�2

)
∈ HA � =

(
�1

�2

)
∈ HB

are normalized. Then one can find out that

α = 1
4 (1 − |〈�,�〉|2) β = 1

2 (|�2|2�1�2 − |�2|2�1�2) (19)

where 〈·, ·〉 is the inner product in C2. So

C(ρas) = 1
2 (1 − |〈�,�〉|2). (20)

From formula (21) we see that there are separable initial states for which asymptotic states are
entangled. In particular, the asymptotic state has a maximal concurrence if vectors � and �

are orthogonal and their concurrence is zero (the state remains separable) if |〈�,�〉| = 1.
Now we discuss some special cases.
(a) When one atom is in an excited state and the other in the ground state

� = |1〉 � = |0〉
the asymptotic (mixed) state is given by

ρas =


0 0 0 0

0 1
4 − 1

4 0

0 − 1
4

1
4 0

0 0 0 0

 .

It can also be shown that in this case the relaxation process produces the state ρt with
concurrence

C(ρt ) = 1 − e−γ0t

2

increasing to the maximal value equal to 1/2. Thus two atoms initially in separable states
become entangled for all t and the asymptotic (steady) state attains the maximal amount of
entanglement.

(b) When two atoms are in excited states

� = � = |1〉
the asymptotic state is equal to

|0〉 ⊗ |0〉.
Thus the relaxation process brings the two atoms into the ground state.

(c) The |0〉 ⊗ |0〉 state is stationary for the semi-group {Tt}.
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4.2. Pure maximally entangled states

Let

ρ = Q(a, θ1, θ2) =



a2

2
a
√

1−a2

2 e−iθ1 a
√

1−a2

2 e−iθ2 − a2

2 e−i(θ1+θ2)

a
√

1−a2

2 eiθ1 1−a2

2
1−a2

2 ei(θ1−θ2) − a
√

1−a2

2 e−iθ2

a
√

1−a2

2 eiθ2 1−a2

2 e−i(θ1−θ2) 1−a2

2 − a
√

1−a2

2 e−iθ1

− a2

2 ei(θ1+θ2) −
√

1−a2

2 eiθ2 − a
√

1−a2

2 eiθ1 a2

2


where a ∈ [0, 1], θ1, θ2 ∈ [0, 2π]. Pure states Q(a, θ1, θ2) are maximally entangled and form
a family of all maximally entangled states of the four-level system [19]. It turns out that ρas is
defined by

α = 1
4 (1 − a2)(1 − cos(θ1 − θ2))

β = 1
4a

√
1 − a2(e−iθ1 − e−iθ2)

(21)

and

C(ρas) = 1
2 (1 − a2)(1 − cos(θ1 − θ2)). (22)

From formula (23) we see that there are initial maximally entangled states which asymptotically
become separable (a = 1 or θ1− θ2 = 2kπ) such that the asymptotic concurrence is greater
than 0. States with a = 0 and θ1− θ2 = (2k + 1)π remain maximally entangled. For example
the state

1√
2
(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉) (23)

is stable. On the other hand, the concurrence of

1√
2
(|0〉 ⊗ |1〉 + |1〉 ⊗ |0〉) (24)

goes to zero faster than the concurrence of

1√
2
(|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉) (25)

as shown in figure 1. In Dicke’s theory of spontaneous radiation processes the state (24) is
called subradiant whereas the state (25) has half the lifetime of a single atom and therefore
is called superradiant [18]. We see that the time-dependence of concurrence reflects the
relaxation properties of those states.

4.3. Some classes of mixed states

(a) Bell-diagonal states. Let

ρB = p1|�+〉〈�+| + p2|�−〉〈�−| + p3|�+〉〈�+| + p4|�−〉〈�−| (26)

where Bell states �± and �± are given by

�± = 1√
2
(|0〉 ⊗ |0〉 ± |1〉 ⊗ |1〉) �± = 1√

2
(|1〉 ⊗ |0〉 ± |0〉 ⊗ |1〉) (27)
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1

Figure 1. Concurrence as a function of time for initial states: 1√
2
(|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉) (dotted

line) and 1√
2
(|0〉 ⊗ |1〉 + |1〉 ⊗ |0〉) (solid line).

It is known that all pi ∈ [0, 1/2], ρB is separable, while for p1 > 1/2, ρB is entangled with
concurrence equal to 2p1 − 1 (similarly for p2, p3, p4) [20]. Now the asymptotic state has the
form

ρas =


0 0 0 0

0 p4

2 −p4

2 0

0 −p4

2
p4

2 0

0 0 0 1 − p4

 (28)

with concurrence C(ρas) = p4. So even when the initial state is separable, the asymptotic
state becomes entangled.

(b) Werner states [21]. Let

ρW = (1 − p)
I4

4
+ p|�+〉〈�+|. (29)

If p > 1/3, ρW is entangled with concurrence equal to (3p − 1)/2. However

ρas =



0 0 0 0

0 1−p

8
p−1

8 0

0 p−1
8

1−p

8 0

0 0 0 3+p

4

 (30)

has the concurrence C(ρas) = 1−p

4 , so the asymptotic states are entangled for all p �= 1. Note
that even completely mixed state I4

4 evolves to an entangled asymptotic state.
(c) Maximally entangled mixed states. The states

ρM =


h(δ) 0 0 δ/2

0 1 − 2h(δ) 0 0

0 0 0 0

δ/2 0 0 h(δ)

 h(δ) =
{

1/3 δ ∈ [0, 2/3]

δ/2 δ ∈ [2/3, 1]
(31)
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Figure 2. Concurrence of ρM (solid line) and ρas (dotted line) as a function of tr ρ2
M.

are conjectured to be maximally entangled for a given degree of impurity measured by tr ρ2

[22]. According to (18) the concurrence of the asymptotic state is given by

C(ρas) = 1
2 (1 − 2h(δ)) (32)

Even in that case, there are initial states (for sufficiently small tr ρ2
M) such that the asymptotic

state is more entangled (see figure 2).

5. Remarks on the general case

In the case of arbitrary distance between the atoms, i.e. when g ∈ [0, 1), the semi-group
generated by L is uniquely relaxing, with the asymptotic state |0〉 ⊗ |0〉. Thus, for any initial
state ρ, the concurrence C(ρt ) approaches 0 when t → ∞. But it does not mean that the
function t → C(ρt ) is always monotonic. The general form of C(ρt ) is rather involved, so
we consider only some special cases.

(1) Let the initial state of the compound system be equal to |0〉⊗ |1〉. This state evolves to

ρt =


0 0 0 0

0 1
2 e−γ0t (cosh γ t + 1) − 1

2 e−γ0t sinh γ t 0

0 − 1
2 e−γ0t sinh γ t 1

2 e−γ0t (cosh γ t − 1) 0

0 0 0 1 − e−γ0t cosh γ t

 (33)

with concurrence

C(ρt ) = e−γ0t sinh γ t. (34)

In the interval [0, tγ ], where

tγ = 1

2γ
ln

γ0 + γ

γ0 − γ

the function (34) is increasing to its maximal value

Cmax = γ

γ0 − γ

(
γ0 + γ

γ0 − γ

)− γ0+γ

2γ

whereas for t > tγ , C(ρt ) decreases to 0. Thus for any nonzero photon exchange rate γ ,
dynamics given by the semi-group {Tt} produces some amount of entanglement between two
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Figure 3. C(ρ+
t ) (dotted line) and C(ρ−

t ) (solid line) for γ/γ0 = 0.99.

atoms which are initially in the ground state and excited state. Note that the maximal value of
C(ρt ) depends only on emission rates γ0 and γ .

(2) For the initial states

�± = 1√
2
(|0〉 ⊗ |1〉 ± |1〉 ⊗ |0〉)

the relaxation to the asymptotic state |0〉 ⊗ |0〉 is given by density matrices

ρ±
t =


0 0 0 0

0 1
2 e−(γ0 ± γ )t − 1

2 e−(γ0 ± γ )t 0

0 − 1
2 e−(γ0 ± γ )t) 1

2 e−(γ0 ± γ )t 0

0 0 0 1 − e−(γ0 ± γ )t

 (35)

with the corresponding concurrence

C
(
ρ±

t

) = e−(γ0±γ )t .

The state �− is no longer stable (as in the case of γ = γ0), but during the evolution its
concurrence goes to zero slower than C

(
ρ+

t

)
(figure 3). For γ close to γ0,�

− is almost stable.
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